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Highlights

• This is the first work to apply two non-intrusive ROMs for solving the N–S equations.
• A second order Taylors series method for calculating the POD coefficients.
• A Smolyak sparse grid collocation method for calculating the POD coefficients.
• Implementation of the non-intrusive ROMs does not require modifications to a system code.
• Ability of non-intrusive ROMs to capture the highly nonlinear fluid dynamics.

Abstract

This article presents two new non-intrusive reduced order models based upon proper orthogonal decomposition (POD) for
solving the Navier–Stokes equations. The novelty of these methods resides in how the reduced order models are formed, that is,
how the coefficients of the POD expansions are calculated. Rather than taking a standard approach of projecting the underlying
equations onto the reduced space through a Galerkin projection, here two different techniques are employed. The first method
applies a second order Taylor series to calculate the POD coefficients at each time step from the POD coefficients at earlier time
steps. The second method uses a Smolyak sparse grid collocation method to calculate the POD coefficients, where again the
coefficients at earlier time steps are used as the inputs. The advantage of both approaches are that they are non-intrusive and so
do not require modifications to a system code; they are therefore very easy to implement. They also provide accurate solutions
for modelling flow problems, and this has been demonstrated by the simulation of flows past a cylinder and within a gyre. It is
demonstrated that accuracy relative to the high fidelity model is maintained whilst CPU times are reduced by several orders of
magnitude in comparison to high fidelity models.
c⃝ 2015 Elsevier B.V. All rights reserved.

Keywords: Non-intrusive model reduction; Smolyak sparse grid; Taylor series; POD; Navier–Stokes

∗ Corresponding author.
E-mail address: f.fang@imperial.ac.uk (F. Fang).

1 URL: http://amcg.ese.imperial.ac.uk.

http://dx.doi.org/10.1016/j.cma.2015.05.015
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.05.015&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.05.015
http://www.elsevier.com/locate/cma
mailto:f.fang@imperial.ac.uk
http://amcg.ese.imperial.ac.uk
http://dx.doi.org/10.1016/j.cma.2015.05.015


D. Xiao et al. / Comput. Methods Appl. Mech. Engrg. 293 (2015) 522–541 523

1. Introduction

Reduced order models (ROMs) have become prevalent in many fields of physics as they offer the potential to
simulate dynamical systems with substantially increased computation efficiency in comparison to standard techniques.
Among the model reduction techniques, the proper orthogonal decomposition (POD) method has proven to be an
efficient means of deriving a reduced basis for high-dimensional nonlinear flow systems. The POD method has been
successfully applied to numerous research fields and has a number of variants, such as the principal component
analysis (PCA) method [1] in statistics; Karhunen–Loeve method [2] in signal analysis and pattern recognition; and
empirical orthogonal functions (EOF) [3,4] in geophysical fluid dynamics and meteorology. The POD method has
also been applied to ocean models in Cao et al. [5], Vermeulen and Heemink [6] and also to shallow water equation
models. Its application includes the work of Daescu and Navon [7], Stefanescu et al. [8,9], Chen et al. [10,11], Altaf
et al. [12], Du et al. [13], Fang et al. [14], as well as Xiao et al. [15,16].

However in most cases the source code describing the physical model has to be modified in order to generate
the reduced order model. These modifications can be complex, especially in legacy codes, or may not be possi-
ble if the source code is not available (e.g. in some commercial software) [17]. To circumvent these shortcom-
ings, more recently, non-intrusive methods have been introduced into ROMs, which do not require the knowledge
of the governing equations and the original code [17]. Noack [18] and Noori [19] introduced the Neural Net-
work into ROMs. Chen [17] proposed a Black Box Stencil interpolation non-intrusive method, which is based on
parametric regression methods, and applied it to a one dimensional chemical reaction problem and two dimen-
sional porous media flow problems. Audouze et al. [20] proposed a non-intrusive Radial Basis Function (RBF)
reduced-order modelling method for approximating the solutions of nonlinear time-dependent parameterized par-
tial differential equations (Burgers’ equation and a parameterized convection–reaction–diffusion problem). Iuliano
and Quagliarella [21] developed a non-intrusive POD ROM for aerodynamic shape optimization. Guénot et al. [22],
Casenave et al. [23] and Klie [24] proposed a non-intrusive POD ROM based on RBF and the EIM/DEIM algo-
rithm. However, most of current non-intrusive ROMs may still suffer from prohibitive computational costs due to the
exponential increase of the number of multidimensional functions with the dimensional size of problems (in ROM,
the dimensional size d = P × Nv , where P is the number of POD bases and Nv is the number of variables to be
solved).

To cope with the curse of dimensionality, as we know, the Smolyak sparse grid method [25] is an efficient method
of integrating/interpolating multidimensional functions based on a univariate quadrature rule. This sparse grid method
has been widely applied in various applications [26–28], including numerical integration [29], partial differential
equations [30], economics [31,32], stochastic natural convection problems [33], sensitivity analysis [34], portfolio
problems [35] and high dimensional interpolation [36].

To our best knowledge, little attempt has been made to use the sparse grid method in ROMs with exception of
Peherstorfer [37], Cheng [38], Ullmann [39] and Lang, and Sumant [40]. Peherstorfer [37] presented a reduced-
order model of parameterized systems by employing a sparse grid machine learning method and applied this new
ROM to thermal conduction and chemical reaction simulations. Sumant [40] used a Smolyak algorithm to compute
orthogonal polynomial expansions coefficients in the reduction of random input variables for an electromagnetic
problems. Cheng [38] presented a method for numerical simulation of the stochastic Berger equation, and investigated
the sparsity property in terms of Karhunen–Loeve expansions. Ullmann [39] and Lang assessed the applicability of
POD/Galerkin to stochastic collocation on the sparse grid.

This paper presents the first work to apply non-intrusive ROMs to the Navier–Stokes equations. These ROMs are
implemented here within a high fidelity unstructured mesh fluid model. The ability of non-intrusive ROMs to capture
the highly nonlinear fluid dynamics is investigated here. The first non-intrusive ROM uses a sparse grid collocation
approach (based on Smolyak grids) and another is derived using Taylor series expansion. The reduced order mod-
els are constructed using a finite element Bubnov–Galerkin discretization of the Fluidity fluid dynamics modelling
software [41] taking snapshots of the solution variables at regular time intervals. In the Smolyak sparse grid ROM
approach, solutions of the full model are recorded (as a sequence of snapshots), and from this data appropriate basis
functions are formed that optimally represent the problem. The Smolyak sparse grid method is used to construct in-
terpolation functions that approximate the non-linearity of the model. In the Taylor/POD approach, the model based
on snapshots is expanded through a Taylor expansion to second order so as to capture the quadratic non-linearities in
the high fidelity system.
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The structure of the paper is as follows. Section 2 presents the governing equations, followed by the derivation
of the standard POD model reduction. Section 3 presents the non-intrusive method based on the second order Taylor
series theory. Section 4 presents the Smolyak sparse grid method in reduced order modelling. Section 5 demonstrates
the method’s capabilities by solving two problems. Finally in Section 6, the summary and conclusions are presented.

2. Reduced order modelling of the Navier–Stokes equations

2.1. Governing equations

This article considers the three dimensional non-hydrostatic Navier–Stokes equations describing the conservation
of mass and momentum of a fluid,

∇ · u = 0, (1a)

∂u
∂t

+ u · ∇u + f k × u = −∇ p + ∇ · τ . (1b)

In these equations the term u ≡ (ux , u y, uz)
T denotes the velocity vector, p the perturbation pressure (p :=

p/ρ0, ρ0 is the constant reference density) and f the Coriolis inertial force. The stress tensor τ included in the
diffusion term represents the viscous forces, and this is defined in terms of a deformation rate tensor S which is given
by,

τi j = 2µi j Si j , Si j =
1
2


∂ui

∂x j
+
∂u j

∂xi


−

1
3

3
k=1

∂uk

∂xk
, i, j = {x, y, z}. (2)

In this expression µ denotes the kinematic viscosity and it is assumed that there is no summation over repeated
indices. The horizontal (µxx , µyy) and vertical (µzz) kinematic viscosities are assumed to take constant values and
define the off diagonal components of τ in Eq. (2) by µi j = (µi iµ j j )

1/2. For barotropic flow, the pressure p consists
of hydrostatic ph(z) and non-hydrostatic pnh(x, y, z, t) components.

2.2. Reduction via proper orthogonal decomposition

2.2.1. Proper orthogonal decomposition
In the POD formulation a new set of basis functions is constructed from a collection of snapshots that are taken

at a number of time instances of the full model solution. The model described in Eqs. (1a) and (1b) are solved
and snapshots of the solution are taken as it evolves through time. In the formulation presented here snapshots of
each component of the velocity vector u = (ux , u y, uz) and pressure p are recorded individually. Each snapshot
is a vector of size N and holds the values of the respective solution component at the nodes of the finite element
mesh. For each velocity or pressure component, the sampled values at the snapshot s are stored in the vectors U x

s ,
U y

s , U z
s and U p

s (where the superscripts denote space direction or pressure) with N entries (N being the number
of nodes). A collection of all U x

s , U y
s , U z

s and U p
s constructs four separate matrices U x

= (U x
1 , . . . ,U x

s , . . . ,U x
S ),

U y
= (U y

1 , . . . ,U y
s , . . . ,U y

S ), U z
= (U z

1 , . . . ,U z
s , . . . ,U z

S) and U p
= (U p

1 , . . . ,U p
s , . . . ,U p

S ) respectively (where S is
the number of snapshots). From here on each snapshot matrix will be treated separately, but in an identical manner,
and so the superscripts are omitted for the sake of simplicity of notation and the details are provided for a general
snapshot matrix U .

Taking the deviation from the mean forms a modified snapshot matrix Ũ by,

Ũs = Us − U , s ∈ {1, 2, . . . , S}, (3)

where

U =
1
S

S
s=1

Us . (4)
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The goal of POD is to find a set of orthogonal basis functions {φs}, s ∈ {1, 2, . . . , S}, such that it maximizes

1
S

S
s=1

< Ũs, φs >L2

2 , (5)

subject to

S
s=1

| < φs, φs >L2 |
2

= 1, (6)

where ⟨·, ·⟩L2 is the canonical inner product in L2 norm.
The approach introduced by Sirovich [42] is used to find an optimal set of basis functions Φ of the optimization

problem (5). This involves performing a Singular Value Decomposition (SVD) of the snapshot matrix Ũ given in the
form,

Ũ = UΣV T . (7)

The terms U ∈ RN ×N and V ∈ RS×S are the matrices that consist of the orthogonal vectors for Ũ Ũ T and Ũ T Ũ ,
respectively and Σ is a diagonal matrix of size N × S. The non zero values of Σ are the singular values of Ũ , and
these are assumed to be listed in order of their decreasing magnitude. It can be shown [43] that the POD vectors are
defined to be the column vectors of the matrix V ,

φs = Ũ V:,s/
√
λs, for s ∈ {1, 2 . . . S}, (8)

and the optimal basis set of size P consists of the functions corresponding to the largest P singular values (i.e. the
first P columns of U ). These vectors are optimal in the sense that no other rank P set of basis vectors can be closer to
the snapshot matrix Ũ in the Frobenius norm.

In POD, any variable ψ (for example, the velocity and pressure components) can be expressed by the expansion,

ψ = ψ +

P
j=1

α jφ j , (9)

where α j denote the coefficients of the POD expansion andψ is the mean of the ensemble of snapshots for the variable
ψ .

As a final note, the loss of information due to the truncation of the POD expansion set to P vectors can be quantified
by the following ratio,

I =

P
j=1

λ2
j

S
j=1

λ2
j

, (10)

where λ denotes singular values. The value of I will tend to 1 as P is increased to the value S, which would imply no
loss of information.

2.2.2. Implementation of a standard (Galerkin projection) POD reduced order model
For simplicity Eqs. (1a) and (1b) can be re-written in the general form:

∂ψ

∂t
= F(ψ). (11)

Taking the POD basis function as the test function, then integrating (11) over the computational domain Ω , yields:
∂ψ

∂t
, φ j


Ω

= ⟨F(ψ), φ j ⟩Ω . (12)
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Substituting (9) into (12), the POD reduced order equations are then obtained:

∂αk

∂t
=


F


ψ̄ +

P
j=1

α jφ j


, φk


Ω
, for k ∈ {1, 2 . . . P}, (13)

subject to the initial condition

αk(t) = ((ψ(t)− ψ̄), φk), at t = 0. (14)

Eq. (13) at time level n can be written:

αn
k − αn−1

k

∆t
=


F


ψ̄ +

P
j=1

αn−1
j φ j


, φk


Ω
, for k ∈ {1, 2 . . . P}, (15)

where ∆t is the time step size to be used. Eq. (15) can be rewritten in the general form below:

αn+1
k = fk(α

n), k ∈ {1, 2, . . . , P}. (16)

In this work, alternative approaches are sought for quickly estimating the multidimensional functions fk in (16). This
enables us to then estimate the POD coefficients of the reduced order model at arbitrary times. The first of these
methods is implemented through a Taylor series expansion and the second is through a Smolyak sparse grid method.
These are detailed in the following sections.

3. The Taylor series method for the calculation of the POD coefficients

3.1. Taylor expression of the POD Coefficients

For a new time step, say n + 2, a first order Taylor expansion of the POD coefficients αn+2
= (αn+2

1 , . . . , αn+2
P )T

(where α denotes the complete set of coefficients for velocity and pressure) can be written as,

αn+2
= αn+1

+
∂αn+1

∂αn (αn+1
− αn), (17)

in terms of the POD coefficients on the previous two time steps. The term (αn+1
−αn) denotes the change in coefficient

values over time steps n + 1 and n, where n ∈ {1, 2, . . . , N } (N is the total number of time levels). Due to the
Navier–Stokes equations having quadratic non-linearities, it is more appropriate to extend this Taylor expansion to
second order accuracy,

αn+2
= αn+1

+


M0 +

P
k=1

(αn+1
k − αn

k )Mk


(αn+1

− αn), (18)

which is expressed in terms of matrices M0 and Mk , for k ∈ {1, 2, . . . , P}, that have dimensions P × P . These denote
the derivatives of the POD coefficients at one time step with respect to a change in the POD coefficients at the previous
time step. The matrix M0 holds the first order derivatives and is given by,

(M0)i, j =
∂αn+1

i

∂αn
j

≈
∂α1

i

∂α0
j

, i, j ∈ {1, 2, . . . , P}, (19)

whereas the matrices Mk contain the second order derivatives which are given by,

(Mk)i, j =
∂2αn+1

i

∂αn
j∂α

n
k

≈
∂2α1

i

∂α0
j∂α

0
k

, i, j, k ∈ {1, 2, . . . , P}. (20)

Note that the matrices M0 and Mk , for k ∈ {1, 2, . . . , P} are assumed to be constant in time and so can be pre-
calculated. Once the solutions α0 and α1 at the first two time instances t = 0, 1 are determined, the POD coefficients
at time level n can be estimated from Eq. (17).
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3.2. Offline calculation of the first and second derivative matrices in the Taylor series

An efficient way to calculate the derivative matrices M0 and Mk , for k ∈ {1, 2, . . . , P} is through a perturbation
of the POD coefficients at one time instance. Suppose the perturbation vector is ∆α0

j = (0, . . . , δα0
j , . . . , 0)T for a

perturbation δα0
j of the j th entry in α0, then the i th element of the computed POD vector α̂1 at time instance 1 will

provide the variation of the i th POD coefficient with respect to the change in α0. This can be used to compute the first
derivative matrix, M0 through the relationship:

(M0)i, j =
α̂

1
i − α1

i

δα0
j

, i, j ∈ {1, 2, . . . , P}. (21)

The perturbed solutions α̂1 at time step 1 can be thus calculated using the following process:

(a) Map the vectors α0
+ ∆α0

j to the full space, then obtain the perturbed initial solution ψ̂0
= ψ +

P
j=1(α

0
+

∆α0
j )φ j ;

(b) Calculate the solution at the next time step, ψ̂1, through running the full model one time instance;
(c) Obtain the perturbed POD vector α̂

1
i by projecting ψ̂1 onto the reduced space, α̂1

= φT ψ̂1.

The whole matrix M0 can be computed by repeating the process P times and perturbing each POD coefficient
α0

j ( j ∈ {1, 2, . . . , P}) in turn.
The calculation of the second derivative matrix Mk in (20) follows an extended route similar to that used in the

generation of the matrix M0. For each k, two perturbed vectors are created, α̂0,+
k and α̂0,−

k , which have small pos-

itive and negative perturbations in the kth entry of the original vector α0, i.e. α̂0,±
k = α0

± ∆α0
k , where, ∆α0

k =

(0, . . . , δα0
k , . . . , 0)T . Using these two vectors, two first order derivative matrices are generated using the process

described above, these are denoted M+

k and M−

k and have elements defined as,

(M0)
±

i, j =
∂α

±,1
i

∂α
±,0
j

i, j ∈ {1, 2, . . . , P}. (22)

The second order derivatives are formed from the two Taylor expansions,

(Mk)
±

i, j = (M0)i, j ±
∂

∂α0
k

(M0)i, j∥δα
0
k ∥, (23)

which, by subtracting one from the other, can be re-arranged to form,

(Mk) =
1

2∥δαk∥
(M+

k − M−

k ). (24)

4. The Smolyak sparse grid method for calculating the POD coefficients

The Smolyak sparse grid algorithm is an efficient method that is used to solve high dimensional linear tensor
product problems. Using the Smolyak method, the interpolation function values need to be determined only at the
sparse grid mesh points rather than on the full tensor product grid, thus resulting in an impressive computational
economy in comparison to tensor product evaluations, as the number of points no longer increases exponentially with
the dimensional size d . In this work, the Smolyak sparse grid interpolation method [25] is used to construct a set of
interpolating multidimensional functions f̂k, (k ∈ {1, 2, . . . , P}) for representing the functions fk in Eq. (16).

4.1. The Smolyak sparse grid algorithm

Let f̂ d,l
k denote a Smolyak interpolant of dimension d with an approximational level l, which is a linear

combination of tensor product operators:

f̂ d,l
k (αn) =


max(d,l+1)≤|l|≤d+l

(−1)d+l−|j|
·


d − 1

d + l − |i|


(U i1 ⊗ · · · ⊗ U id ) f (αn), (25)
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where |i| = i1 + · · · + id (here i1, . . . , id are indices in each dimension respectively), (−1)d+l−|i|
·


d − 1

d + l − |i|


is a

counting coefficient. The tensor product operator of a d-dimensional function fk is defined as:

(U i1
k ⊗ · · · ⊗ U id )( fk) =

Ol1
j1=1

. . .

Oid
jd=1

fk(x
i1
j1
, . . . , x id

jd
).(P i1

j1
⊗ · · · ⊗ P id

jd
), (26)

where P i1
j1
, P i2

j2
, . . . , P id

jd
are the basis functions and Ol1 , Ol2 ...Old are the number of basis functions used in each

dimension with Oid = 2id−1
+ 1 respectively, f (x i1

j1
, . . . , x id

jd
) represents the function value at (x i1

j1
, . . . , x id

jd
), and

id = 1, 2, . . . , Old .

4.2. The calculation of the POD coefficients

A set of Smolyak interpolation functions f̂ d,l
k (αn) in the form of (25) is now used to estimate the POD coefficient

αn
k at time level n + 1,

αn+1
k = f̂k(α

n), k ∈ {1, 2, . . . , P}, (27)

where the spatial dimensional size d equals the size of the reduced order space (i.e. the number of POD bases P). The
input for each interpolation function f̂k(α

n) is the complete set of POD coefficients αn
= (αn

1 , α
n
2 , . . . , α

n
P ) at the

previous times step n. The output of f̂ d,l
k (αn) is the kth POD coefficient αn+1 at time step n + 1, i.e.,

f̂ d,l
k (αn) : αn

→ αn+1
j , k ∈ {1, 2, . . . , P}. (28)

The Smolyak interpolation functions f̂ d,l
k (αn) are calculated offline using the functional values at the Smolyak

grids. Each interpolation function denotes a supercube surface or a P-dimensional super surface. Once the interpolation
functions are constructed, the POD coefficients at the current timestep n + 1 are obtained by entering the POD
coefficients at the previous timestep n into the interpolation functions.

The offline calculation of the Smolyak interpolation functions f̂ d,l
k (αn) can be described as follows:

(a) Choose a set of sparse interpolation grids αr,0
= (α

r,0
1 , α

r,0
2 , . . . , α

r,0
P ) (where r ∈ {1, 2, . . . , R}, R is the number

of sparse grids to be chosen), which lie in some product interval
[Amin, Amax] = [α1,min, α1,max ] . . .⊗ [α j,min, α j,max ] . . .⊗ [αP,min, αP,max ]

(where αk,min and αk,max are the minimum and maximum values of the kth POD coefficient, k ∈ {1, 2, . . . , P});
(b) Calculate a corresponding set of the function value αr,1

k = fk(α
r,0) located at the sparse grids through running the

full model one time step from time level 0 to 1:
(i) Determine the initial condition ψr,0 for the full model by projecting αr,0 onto the full space, where ψ denotes

any variable in the full model, for example, the velocity components ux , u y and uz , and the pressure p;
(ii) Determine the full solution ψr,1 by running the full model one time level;

(iii) Calculate the function value αr,1
j at sparse grid r by projecting ψr,1 onto the reduced order space;

(iv) Repeat the above procedures (i)–(iii) and obtain all the function values at the sparse grids r ∈ {1, 2, . . . , R};
(c) Given a set of αr,1

j , construct the interpolation function f̂ d,l
k (αn), k ∈ {1, 2, . . . , P}.

5. Numerical examples

A demonstration of the use of the non-intrusive POD reduced order modelling schemes is presented in this section.
This numerical illustration consists in solving two problems. In one we model flow past a cylinder and in the other
we model flow within a gyre. We used the Arpack package to perform the singular Value Decomposition and, in
particular, to obtain the leading singular value. The Smolyak grid was determined using the “SPARSE INTERP ND
Multidimensional Sparse Interpolant” authored by Burkardt [28,44] whilst the original fine grid simulations were
calculated using Fluidity [41]. These provided the exact solutions for model comparison, as well as the snapshots for
the POD function generation.
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In this demonstration a comparison between the full model and the non-intrusive model reduction approach has
been made. In addition to comparing solution profiles the analysis compares the solution root mean square errors, as
well as correlation coefficients. The measured error is given by the root mean square error (RMSE) which is calculated
for each time step n by,

RM SEn
=

 F
i=1
(ψn

i − ψn
o,i )

2

F
. (29)

In this expression ψn
i and ψn

o,i denote the POD (mapped onto the full mesh) and the full model solution at the node i ,
respectively, and F represents the number of nodes on the full mesh. The correlation coefficient is computed for each
time step, and is defined for given expected values µψn and µψn

o
and standard deviations σψn and σψn

o
,

corr(ψn, ψn
o )

n
=

cov(ψn, ψn
o )

σψnσψn
o

=
E(ψn

− σψn )(ψn
o − σψn

o
)

σψnσψn
o

, (30)

where E denotes mathematical expectation, cov denotes covariance, σ denotes standard deviation.

5.1. Case 1: Flow past a cylinder

We illustrate the novel non-intrusive methods via two numerical examples. Both cases typify non-laminar flows. In
the first numerical example a two dimensional flow past a cylinder is simulated. In fluid dynamics, vortex shedding is
an oscillating flow that takes place when a fluid such as air or water flows past a cylindrical body at certain velocities,
depending on the size and shape of the body. These are called Von Karman vortices.

The problem domain is 2 units in length and 0.4 units in width, and it contains a cylinder of radius 0.12 units at
location (0.2, 0.2). The dynamics of the fluid flow are caused by a slightly compressible fluid flowing through the
domain with a velocity 1. This enters the domain through the left boundary. The fluid is allowed to flow past the
cylinder and out of the domain through the right boundary. No slip and zero outward flow conditions are applied to
the upper and lower edges of the problem, whilst Dirichlet boundary conditions are applied to the cylinder’s wall.
From the full model simulation, with a mesh of 3213 nodes, 400 snapshots were obtained at regularly spaced time
intervals ∆t = 0.02 for each of the u, v and p solution variables.

In order to evaluate the capabilities and the difference between the Smolyak sparse grid ROM and the Taylor
expansion POD model, two cases one with a Reynolds number of 400 and the other with a Reynolds number of 3600
were investigated. The simulation period is [2 − 10], and a time step of ∆t = 0.01 was used for all models.

Fig. 1 shows the solutions for the flow past the cylinder at time instances 3.0 and 10.0, as calculated using the two
non-intrusive models (Smolyak sparse grid ROM and Taylor/POD model respectively), the full high fidelity model
and the standard (Galerkin projection) POD model using 12 POD basis functions. The Reynolds number was 400
in this case. These solutions show that all methods have performed particularly well at resolving the flow at both
time instances. This is highlighted further in Fig. 2 which presents the solution velocities predicted by all methods
at the position (0.19397, 0.28101) on the domain. It can be seen from this figure that the Smolyak sparse grid ROM
is in closer agreement with the full model, whilst both the standard and Taylor POD models are able to capture the
wave pattern, but have a large error near the peak of waves during the spin-up period of modelling, i.e. [200, 550].
It is shown the Smolyak sparse grid ROM can perform better than other POD models since it is highly customizable
through the choice of admissible multi-index sets and well converges to the tensor product of exact operators [45].

To further demonstrate the capability of the non-intrusive models, the Reynolds number was then increased to
Re = 3600. Visual inspection of Fig. 3 shows that decrease of eigenvalues satisfies exponential Kolmogorov n-width.
This helps us to choose the number of POD bases. The more number of POD bases are chosen, the more energy is
captured. In this case, 12, 24 and 35 POD bases are used to demonstrate the performance of ROM.

The comparison of results between the full and POD models (the standard, Taylor and Smolyak sparse grid non-
intrusive POD models) was carried out. Fig. 4 shows the simulated flow patterns at time instances 3.0 and 10.0 (where
12 POD bases are used). As shown in the figures the Smolyak sparse grid non-intrusive model performs well for
this Reynolds number. However, it can be seen that the Taylor/POD non-intrusive model does not capture well the
complex flow patterns and eddies for this high Reynolds number while the standard POD model has a large error near
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(a) full model, t = 3.0. (b) full model, t = 10.0.

(c) standard POD, t = 3.0. (d) standard POD, t = 10.0.

(e) Taylor/POD, t = 3.0. (f) Taylor/POD, t = 10.0.

(g) Smolyak sparse grid ROM, t = 3.0. (h) Smolyak sparse grid ROM, t = 10.0.

Fig. 1. Case one—flow past a cylinder at Re = 400: The figures displayed above show the solutions of the flow past a cylinder problem at time
instances 3.0 and 10.0. The solutions compare the predictions from non-intrusive models (Smolyak sparse grid ROM and Taylor/POD) with full
model and standard (Galerkin projection) POD model using 12 POD bases functions.

Fig. 2. Case one—flow past a cylinder: The graphs show the solution velocities predicted by the full model, POD model, Taylor expansion method
and the Smolyak sparse grid ROM at positions: 0.19397, 0.28101, Re = 400.

the cylinder. Fig. 5 shows the difference between the full model and Smolyak sparse grid and standard POD of the
flow past a cylinder problem at time instances 3.0 and 10.0 using 12 and 24 POD basis functions, respectively. The
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Fig. 3. Case one—flow past a cylinder at Re = 400: The graphs show the singular eigenvalues in order of decreasing magnitude.

(a) full model, t = 3.0. (b) full model, t = 10.0.

(c) standard POD, t = 3.0. (d) standard POD, t = 10.0.

(e) Taylor/POD, t = 3.0. (f) Taylor/POD, t = 10.0.

(g) Smolyak sparse grid ROM, t = 3.0. (h) Smolyak sparse grid ROM, t = 10.0.

Fig. 4. Case one—flow past a cylinder at Re = 3600: The figures displayed above show the solutions of the flow past a cylinder problem at time
instances 3.0 and 10.0. The solutions compare the predictions from Smolyak sparse grid ROM and Taylor/POD non-intrusive models with the full
model and the standard POD model using 12 POD basis functions.

figures illustrate the fact that the error between the full model and the Smolyak sparse grid ROM is smaller than that
between full model and the standard POD model.
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(a) standard POD error, t = 3.0, 12 POD bases. (b) standard POD error, t = 10.0, 12 POD bases.

(c) standard POD error, t = 3.0, 24 POD bases. (d) standard POD error, t = 10.0, 24 POD bases.

(e) Smolyak/POD error, t = 3.0, 12 POD bases. (f) Smolyak/POD error, t = 10.0, 12 POD bases.

(g) Smolyak/POD error, t = 3.0, 24 POD bases. (h) Smolyak/POD error, t = 10.0, 24 POD bases.

Fig. 5. Case one—flow past a cylinder at Re = 3600: The figures displayed above show the solution difference between the full model and the
standard POD and the Smolyak sparse grid ROM of the flow past a cylinder problem at time instances 3.0 and 10.0 using 12 POD basis and 24
POD bases.

In this study case, it is demonstrated that the Smolyak sparse grid ROM can reproduce better solutions in
comparison with the other POD models for Re = 400, 3500. The standard POD model is formed by projecting the full
model onto the reduced order space through a Galerkin projection, thus introducing errors into the POD model which
may even grow exponentially and have contributed to the poorer performance of the standard POD approach compared
with the sparse grid ROM. A new Petrov–Galerkin method was introduced to stabilize the resulting equations and
produce more accurate results [15]. Here, we use the standard POD approach. In the Smolyak ROM, the POD
coefficients are computed using sparse grid interpolation (see Eq. (28)) where the functional values are calculated
accurately from the full model (see Section 4.2). It has been argued by others [45] that ‘Smolyak algorithms constitute
the ideal blending of different full tensor approximations from the perspective of exact sets; that is, the exact set of the
Smolyak algorithm contains the union of the exact sets of the component full tensor approximations’. See also [46].
Also the Smolyak sparse grid ROM with an increase of approximation levels is able to represent not only quadratic
(e.g. the Taylor POD ROM proposed here), but also high order non-linearities. These arguments explain why the
Smolyak ROM can perform better than other POD ROMs (both intrusive and non-intrusive).

The accuracy of the POD ROM results can be further improved by increasing the number of POD bases. Figs. 6
and 7 compare the full solution and the Smolyak sparse grid non-intrusive reduced order model when using 24 and
35 POD basis functions respectively. In both cases there is a visual improvement in the Smolyak ROM’s predictions
in comparison to the solutions provided by the standard POD ROM when the same number of basis functions is used.
Fig. 8 shows the flow speed at two points in the domain using 12 POD bases and 35 POD bases. It is again shown that
the accuracy of velocity solution is improved by increasing the number of POD bases to 35. In this case, the Smolyak
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(a) full model, t = 3.0. (b) full model, t = 10.0.

(c) standard POD, t = 3.0. (d) standard POD, t = 10.0.

(e) Smolyak sparse grid ROM, t = 3.0. (f) Smolyak sparse grid ROM, t = 10.0.

Fig. 6. Case one—flow past a cylinder at Re = 3600: The figures displayed above show the solutions of the flow past a cylinder problem at time
instances 3.0 and 10.0. The solutions compare the predictions from Smolyak sparse grid non-intrusive ROM using 24 POD basis functions.

(a) full model, t = 3.0. (b) full model, t = 10.0.

(c) Standard POD, t = 3.0. (d) Standard POD, t = 10.0.

(e) Smolyak sparse grid ROM, t = 3.0. (f) Smolyak sparse grid ROM, t = 10.0.

Fig. 7. Case one—flow past a cylinder at Re = 3600: The figures displayed above show the solutions of the flow past a cylinder problem at time
instances 3.0 and 10.0. The solutions compare the predictions from Smolyak sparse grid non-intrusive ROM using 35 POD basis functions.

sparse grid ROM can perform well only using 12 POD bases when there are no abrupt change in solutions, however,
this abrupt change in time can be captured by increasing the number of POD bases, as shown in Fig. 8. It is also seen
in Fig. 9 that the RMSE of velocity results obtained from the Smolyak sparse grid ROM decreases as the number of
POD bases increases.
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(a) Locations a (0.195, 0.267) and b (0.619, 0.298). (b) Fluid speed at a (0.195, 0.267).

(c) Fluid speed at b (0.619, 0.298).

Fig. 8. Case one—flow past a cylinder at Re = 3600: The graphs show the flow speed predicted by the full model, and the Smolyak sparse grid
ROM at positions a (0.195, 0.267) and b (0.619, 0.298). These results were obtained using a reduced order model with 24 and 35 POD functions.

Fig. 9. Case one—flow past a cylinder at Re = 3600: The graphs show the RMSE of results obtained from Smolyak ROM.

Fig. 10 compares the full model and Smolyak sparse grid ROM using different sparse grid levels l with l ∈ {0, 1, 2}

using 12 POD bases. Each dimension has the number of nodes nl
= 2l

+ 1 in which l denotes the number of levels.
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(a) full model, t = 6.0, 12 POD bases. (b) one level Smolyak grid, t = 6.0, 12 POD bases.

(c) zero level Smolyak grid, t = 6.0, 12 POD bases. (d) two level Smolyak grid, t = 6.0, 12 POD bases.

Fig. 10. Case one—flow past a cylinder at Re = 3600: The graphs show the comparison between full model with different levels of Smolyak grid
using 12 POD bases at t = 6.

Fig. 11. Case one—flow past a cylinder at Re = 3600: Computational times to compute each time step as a function of mesh size (number of
nodes) in the full model. Comparisons are made between the full model and the non-intrusive ROM.

As we can see from Fig. 10, even level one (3 points at each dimension) performs well, while level zero (one point at
each dimension, mean value of each dimension) failed to capture the energy of the flows.

Fig. 11 shows the online CPU time required to compute a single time step with varying mesh size. The offline
CPU time for calculating the Smolyak interpolation functions and the first/second order derivative matrices for the
Taylor/POD method are not taken into account. It shows the cost of the ROM models remain static with increased
resolution of mesh, and that significant CPU speed-ups are obtained using mesh with the largest number of nodes.
For the largest mesh the CPU costs were reduced by a factor of 100 compared to the cost of the high fidelity model.
Table 1 shows comparison of the online CPU time required for running the full model and non-intrusive ROMs for
each time step. The online CPU time listed here includes the time for assembling and solving the matrix for the full
model while interpolating (Smolyak), Matrix multiplication (Taylor) and projecting the POD solution onto the full
space for the non-intrusive ROM. In this study case, the CPU time required for matrix multiplication can be ignored
since the dimensional size (36 × 36) of matrices is very small. It can be seen that the non-intrusive ROM is CPU time
efficient, since it does not involve assembling and solving the matrices process, thus resulting in a speed-up of CPU
time of two orders of magnitude.

5.2. Case 2: The Gyre problem

The second numerical example involves the simulation of a gyre for which a circulating fluid moves across a
domain that is 1000×1000 km across and 500 m in depth. The solution’s free surface is driven by a wind with a force
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Table 1
Case one—flow past a cylinder at Re = 3600: Comparison of the online CPU time (dimensionless) required for running the full model and ROM
for each time step.

Model Assembling Solving Projection Interpolation (Smolyak) Total
matrix multiplication (Taylor)

Full model 3.004 0.113 0.000 0.000 3.117
POD ROM 0.303 0.000 0.008 0.000 0.311
Smolyak ROM 0.000 0.000 0.008 0.004 0.012
Taylor/POD 0.000 0.000 0.008 0.000 0.008

strength given by the expression,

τy = τ0 cos(πy/L) and τx = 0.0, (31)

where L is the system length (L = 1000 km). The terms τx and τy are the wind stresses on the free surface that act
along the x and y directions, respectively. In this example the maximum zonal wind stress was set to τ0 = 0.1 N m−1 in
the latitude (y) direction. The Coriolis terms are taken into account with the beta-plane approximation ( f = βy) where
β = 1.8 × 10−11 and the reference density of the fluid is set to ρ0 = 1000 kg m−3. The velocity is 3.5 × 102 m/s−1.
With this setup the Reynolds number of the problem was calculated to be Re = 300.

The gyre was simulated using a finite element model for a period of 161 days using a time step of ∆t = 0.322
days. From this simulation 500 snapshots of the solution were recorded and from this data 12 POD basis functions
were generated. It was found that this POD basis set captured over 99% of the energy of the u, v and p snapshot data.
The problem was then re-simulated using the newly developed non-intrusive reduced order model. Fig. 12 shows the
velocity profiles obtained from the full model at 41 and 93 days using 6 POD bases. The errors between the full model
and the non-intrusive order model are shown at the bottom of Fig. 12. Fig. 13 shows the velocity profiles obtained
from the full model at 41 and 93 days using 12 POD bases. The numerical results obtained show that the main gyre
is accurately resolved using non-intrusive reduced order model. Fig. 14 shows the RMSE between the full model and
the non-intrusive model, which means the solutions of the non-intrusive model are in close agreement with the high-
fidelity full model solutions. Fig. 15 displays the correlation coefficient between the full model and the non-intrusive
model, this indicates that the RMSE of velocity results obtained from the Smolyak sparse grid model is smaller than
that from the standard POD model. The non-intrusive Smolyak sparse grid model exhibits an overall good agreement
with the full model. It can be also seen that an increase in the number of POD bases leads an improvement in the
accuracy of the POD model—the RMSE of velocity results is decreased.

6. Conclusions

In this article two new non-intrusive reduced order methods are presented. Both methods are based on POD
methodologies where optimal basis functions are generated through the method of snapshots. However rather than
using a standard Galerkin projection ROM approach (code intrusive), the two approaches based on the Smolyak
sparse grid interpolation method and on a second order Taylor series expansion, are employed to calculate the POD
coefficients. The method based on Smolyak sparse grid interpolation method constructs a supercube that replaces the
governing equations within the reduced space. The other method uses a second order Taylor expansion to capture the
quadratic non-linearities in the Navier–Stokes equations. The benefits of the non-intrusive model reduction approaches
presented here are that they do not require any modifications to the source code, due to the fact that they are
independent of the equation of the system, and simply work from a number of snapshots of the full solution.

The methods have been numerically compared against a finite element unstructured adaptive mesh fluid model
(Fluidity) on two flow problems. The two problems were based on the simulation of flow past a cylinder and wind
driven gyre respectively. The two non-intrusive methods gave accurate solutions for modelling both flow problems. It
is demonstrated that accuracy of solutions from both non-intrusive models is maintained whilst online CPU times are
reduced by several orders of magnitude in comparison to high fidelity models. However, for higher Reynolds numbers
the Smolyak method was shown to be more robust in maintaining accuracy for resolving the more complex flows.
An error analysis has also been carried out for the validation and accuracy assessment of the newly non-intrusive
model. The non-intrusive Smolyak sparse grid model exhibits an overall good agreement with the full model. It can
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(a) Full model, t = 41 days. (b) Full model, t = 93 days.

(c) Smolyak grid ROM, t = 41 days. (d) Smolyak grid ROM, t = 93 days.

(e) Error in ROM, t = 41 days. (f) Error in ROM, t = 93 days.

Fig. 12. Case two—gyre: The graphs show the comparison between full model with different levels of Smolyak grid using 12 POD bases at t = 6,
Re = 3600. The figures displayed above show the solutions of the gyre problem at time instance 41 (left) and 93 days (right). The solutions
compare the predictions from the full model (top), the Smolyak sparse grid ROM (middle) using 6 POD functions (middle). The Figures at the
bottom are the difference between full and Smolyak sparse grid ROM.
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(a) full model, t = 41 days. (b) full model, t = 93 days.

(c) Smolyak grid ROM, t = 41 days. (d) Smolyak grid ROM, t = 93 days.

(e) Error in ROM, t = 41 days. (f) Error in ROM, t = 93 days.

Fig. 13. Case two—gyre: The figures displayed above show the solutions of the gyre problem at time instance 41 (left) and 93 days (right). The
solutions compare the predictions from the full model (top), the Smolyak sparse grid ROM (middle) using 12 POD functions (middle). The figures
at the bottom are the errors between full and Smolyak sparse grid ROM.
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Fig. 14. Case two—gyre: The graph shows the RMSE errors calculated for the Smolyak sparse grid ROM.

Fig. 15. Case two—gyre: The graph shows the correlation coefficient calculated for the Smolyak sparse grid ROM.

be also seen that an increase in the number of POD bases leads an improvement in the accuracy of the POD model.
Future work will investigate the effects of applying this new approach to more complex fluid flows and combining
non-intrusive methods with the DEIM methodology (see [24]).
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